

<u>Programa</u>: Monitoreo de Cuerpos Receptores

Subprograma: Atmósfera

Objetivos del Subprograma: Disponer de un sistema de información respecto a variables atmosféricas y establecer un programa de monitoreo de calidad de aire e impacto ambiental para el control de la calidad de la atmósfera de Bahía Blanca.

Período: Enero 2023 a Diciembre de 2023.

Resumen del Plan de Trabajo

Este informe presenta el monitoreo continuo de contaminantes básicos atmosféricos (Dióxido de Azufre, Monóxido de Carbono, Material Particulado (PM₁₀ y PM_{2,5}), Ozono y Óxidos de Nitrógeno) por medio de las Estaciones de Monitoreo de Calidad de Aire de Bahía Blanca (EMCABB I y II).

<u>Metodología</u>

Período de Monitoreo: Enero a Diciembre de 2023

Puntos de Monitoreo

Los puntos de muestreo están ubicados en: EMCABB I (38 44'35,37 S 62 16'38,43" O)- Plaza Horacio Aguirre y es representativo de Barrios aledaños. y EMCABB II (38 46' 55 77"S - 62 15' 58" O) ubicada en Ingeniero White en el terreno de San Martín y Mascarello

La escala representativa para el monitoreo es de tipo local, de acuerdo a lo indicado por la USEPA en el Quality Assurance -Handbook-Vol-II. Los sitios de emplazamiento de las estaciones de monitoreo responden a lo descripto por el 40 CFR Part 58 Appendix D.

Durante fines del año 2021 y principios del año 2022 se relocalizó la EMCABB I ya que en el sitio donde estaba emplazada se venían identificando fuentes locales (construcciones, movimientos de suelos, depósito de áridos, calle de tierra de alto tránsito de camiones) que afectaban los valores de PM_{10} y por lo tanto la calidad de aire no era representativa del aire que respiran los vecinos. Cabe acotar que estaba localizada en zona industrial exclusiva, sin residencias en el sector.

Procedimiento de Muestreo

Automático y continuo, según método de referencia.

Equipamiento Utilizado

EMCABB I (EI)

- Analizador de Material Particulado PM₁₀, Rupprecht & Patashnik, TEOM 1400A.
- Analizador de Monóxido de Carbono T.E.I¹., modelo 48 C.
- Analizador de Dióxido de Azufre T.S²., modelo 43i.
- Analizador de Óxidos de Nitrógeno -T.S²., modelo 42i.
- Analizador de Ozono, T.E.C³. modelo 49 C.
- Módulo para calibración compuesto por:
 - o Calibrador dinámico T.S², modelo 146 i.
 - o Generador de Aire Cero, T.E.I¹ modelo 111.
 - Calibrador de Ozono T.E.C⁴ modelo 49C PS.
 - Gases patrones primarios certificados.

EMCABB II (EII)

- Analizador de Material Particulado PM₁₀- PM_{2,5}, T.S². modelo TEOM 1405 FMDS
- Analizador de Dióxido de Azufre T.S², modelo 43i.
- Analizador de Óxidos de Nitrógeno -T.S²., modelo 42i
- Módulo para calibración compuesto por:
 - o Calibrador dinámico T.S², modelo 146 i.
 - o Generador de Aire Cero, T.S² modelo 1160.
 - Gases patrones primarios certificados

Métodos de Referencia

El equipamiento listado corresponde a lo especificado en el Título 40, Parte 53 del Código Federal de Regulaciones de EEUU.

¹T.E.I.: ThermoEnvironmental Instruments Inc.

² T.S. Thermo Scientific.

³ T.E.C: Thermo Electron Corporation

Validación de datos:

Los resultados obtenidos fueron validados de acuerdo a un procedimiento que consta de 3 niveles de evaluación:

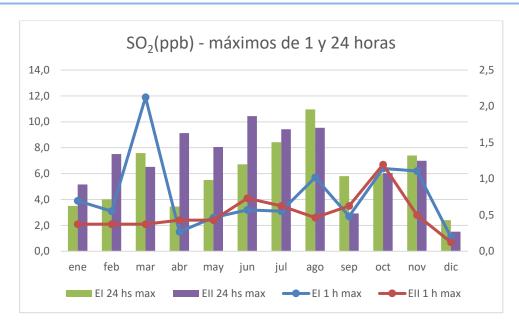
- Nivel 1: Verificación desde la base de datos en tiempo real de datos anómalos.
- Nivel 2: Identificación y eliminación de datos no válidos y ausentes, identificando y reportando las causas en cada caso. En este nivel de validación se analiza también la suficiencia de datos. Se considera que un 75% de mediciones válidas es el número mínimo suficiente para calcular los valores promedios para cada período de observación. Para el valor promedio de 24 h (1 día) se requieren 18 observaciones válidas de promedios horarios y por otra parte se requieren 273 datos diarios para promedio anual.
- Nivel 3: Evaluación de la consistencia espacial, temporal y estacional de los datos. Este último
 nivel de evaluación está referido a la interpretación de la información obtenida en función de
 datos meteorológicos, eventos industriales y situaciones extraordinarias (recepción de las
 emisiones de erupciones volcánicas, entre otras).

Procesamiento de Datos

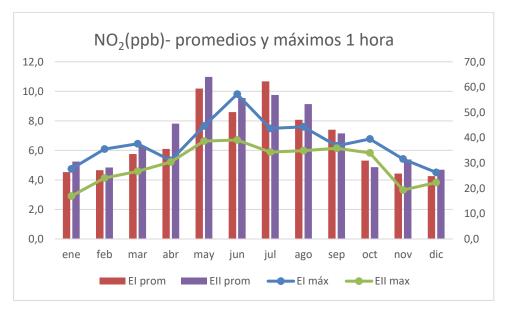
Las evaluaciones estadísticas se realizaron de acuerdo a la guía: Data Quality Assessment: A Reviewer 's Guide (QA/G-9S). Environmental Protection Agency, EPA. EE.UU. 2006.

Marco normativo y de referencia

En octubre de 2018 entró en vigencia el Decreto 1074/18 reglamentario de la Ley 5965 y que reemplazó al Decreto 3395/96. En la tabla se detallan los valores establecidos para los diferentes contaminantes del aire. Los valores indicados como "etapa 1" son los vigentes a partir de los 2 años de su publicación, o sea desde octubre de 2020. Mientras que la etapa 2 rige a partir de octubre de 2021 y la etapa 3 a partir de octubre de 2022.


PARAMETRO/UNIDADES	TIEMPO PROMEDIADO	μg/m³	ppb
	24 horas	150	
PM ₁₀	1 Año	50	
	24 horas	35	
PM _{2,5}	1 Año	12	
	1 hora	40	35
CO (ppm)	8 horas	10	9
SO ₂	1 hora	196	75
302	24 horas	125	48
	1 hora	188	100
NO ₂	1 año	100	53
O ₃	8 horas	100	51

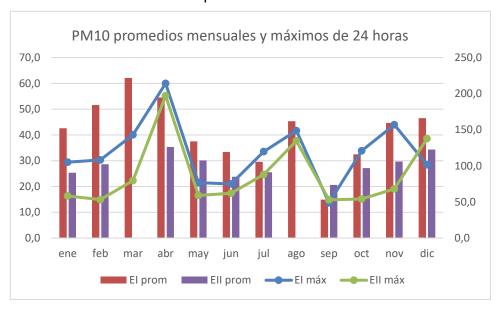
Resultados Obtenidos


De acuerdo a los resultados obtenidos se puede indicar:

- 1. Los parámetros SO₂, NO₂, CO y O₃ de la E I así como SO₂ y NO₂, de la E II cumplieron con las normas de calidad de aire.
- 2. El valor máximo promedio horario de SO₂ en la EI fue de 11,9 ppb en el mes de marzo y de 6,7 ppb en el mes de octubre en la EII, ambos por debajo del valor normado de 75 ppb.
- 3. Los promedios de 24 horas de SO₂ de la EI fue de 2,0 ppb en el mes de Agosto y el máximo valor de 24 horas de la EII fue de 1,9 ppb en el mes de junio. Ambos valores están muy por debajo del valor de la norma para 24 horas que es de 48 ppb.
 - En el gráfico a continuación se muestran los valores máximos horarios y de 24 horas por mes de cada cabina.

4. En cuanto al NO₂, los valores máximos son de 57,2 ppb correspondiente a la EI y de 39,1 ppb en la EII. En ambos casos se registraron en el mes de junio y estuvieron por debajo del valor de la norma de 100 ppb para una hora. Los máximos mensuales fueron, en general, superiores en la EI respecto a la EII.

- 5. Los promedios anuales de NO₂ fueron de 6,7 ppb en el caso de la EI y de 7,4 ppb en la EII, ambos por debajo del valor de la norma de 53 ppb. Los promedios mensuales de la EI fueron levemente superiores en casi todos los meses a los de la EII.
- 6. El máximo valor de CO del año fue de 3,9 ppm, muy por debajo del valor normado de 35 ppm
- 7. El máximo valor de Ozono de la EI para 8 horas de exposición fue de 47 ppb en el mes de febrero y fue cercano al valor de la norma de 51 ppb.



8. Los valores de PM₁₀ de la EMCABB I superaron en 2 oportunidades la norma para 24 horas. Mientras que la EMCABB II superó en una oportunidad. De todas maneras no existen datos de promedio de 24 horas de PM₁₀ de la EMCABB II dado que se registró un corte prolongado de suministro eléctrico ese día.

Fecha	PM ₁₀ -EI	PM ₁₀ -EII	Condiciones
28/4/2023	214,2	197,2	Viento NO entre 25 y 32 km/h-40% Humedad (*)
25/11/2023	157		Viento NO entre 26 y 33 km/h-25% Humedad (*)

(*) Estas condiciones se dieron en las horas de mayor aporte de material particulado

9. El promedio anual de PM_{10} de la EMCABB I fue de 39,5 µg/m³: y el de la EMCABB II fue de 28,7 µg/m³ Ambos promedios se encuentran por debajo de la Norma de calidad de aire. En el gráfico a continuacion se muestran los promedios mensuales de cada estación.

Los promedios de EII de los meses de marzo y agosto no figuran por insuficiencia de datos (<75%)

- 10. Se registró una superación de la norma para 24 horas de exposición de $PM_{2,5}$ en la EMCABB II el día 01/07/2023 alcanzando un valor de $40,4~\mu g/m^3$ con condicion de viento en calma durante las horas de mayores concentraciones.
- 11. El promedio anual de $PM_{2,5}$ en la E II fue de 8,3 μ g/m³, por debajo del valor normado de calidad de aire.

- Los datos de SO₂ y CO se encontraron, como en años anteriores, en valores muy bajos respecto
 a las normas. Mientras que el SO2 es principalmente de origen industrial (Refinería y centrales
 térmicas a Fuel oil) y también hay aportes vehiculares pero en menor proporción, el CO tiene
 múltiples posibles fuentes relacionadas con todos los procesos de combustión: industriales,
 vehiculares, domésticos, incendios, etc.
- Los registros de NO₂ muestran máximos anuales que representan un 50% por debajo del valor normado, mientras que el promedio anual es apenas cercano al 10% del valor normado para un año. Respecto a las posibles fuentes de contaminación, los últimos inventarios de emisión realizados por el CTE (año 2018) mostraban que aproximadamente el 50% correspondía a aportes de origen industrial y el otro 50% correspondía a tránsito.
- Respecto a ozono se registró un valor de promedio de 8 horas cercano al valor normado en el mes de Febrero. Como se sabe, el O₃ es un contaminante secundario que se forma en presencia de óxidos de nitrógeno, hidrocarburos y por acción de la luz solar.
- Las dos superaciones de PM₁₀ en la EI y la de la EII ocurrieron en días con vientos intensos y bajo porcentaje de humedad. Como ya se ha informado en estudios anteriores⁴, en estas condiciones suele superarse la norma mayoritariamente por polvo en suspensión. Por lo que puede apreciarse en el gráfico de promedios y máximos de PM₁₀, los promedios máximos de 24 horas mostraron un comportamiento similar en ambas estaciones a excepción de noviembre que, como se indicó anteriormente estaba fuera de servicio el equipo de medición de la EII ese día.
- Los promedios anuales, como se informó, estuvieron debajo del valor normado. En el caso de la EI se trata del primer promedio informado en la nueva ubicación ya que en el año 2022 no se informó por insuficiencia de datos. Es un valor muy bajo si se compara con datos de monitoreo históricos de la EI comparable con años de pandemia. Sin embargo se estima que, como se venía informando, en la antigua ubicación los aportes de material particulado locales y no representativos de la calidad de aire en zonas pobladas podrían haber incrementado el valor.
- La superación de la norma de 24 horas de PM_{2,5} en la EMCABB II se produjo asociada a condiciones de viento en calma, situación en la cual disminuye la dispersión de las emisiones generadas por diferentes fuentes de material particulado fino: aportes industriales y relacionados con movimientos de cereales en el puerto, emisiones domésticas (calefacción y cocina) además del tránsito.

⁴PIM 2006 Material Particulado PM₁₀: Evaluación de influencia de variables meteorológicas y horarias https://cte.controlambiental.bahia.gob.ar/inc/emcabb/pim/2006/PIM 2006.pdf
Variabilidad temporal del en PM₁₀ Bahía Blanca (Argentina) y su relación con variables climáticas Alicia M. Campo y col. Monitoreo continuo de calidad de aire en Bahía Blanca- resultados históricos de PM₁₀. Marcia V. Pagani y col. Contribuciones del V Congreso PROIMCA

Conclusiones

Como en años previos, los contaminantes que presentan algunos valores por encima de los normados son PM_{10} y $PM_{2,5}$ de 24 horas aunque durante 2023 no se superaron las normas para un año de exposición y hubo solamente 2 superaciones de 24 horas en cada estación, número inferior a años anteriores

Del resto de los contaminantes, el valor de ozono (cercano al valor normado), es el que requiere mayor atención.

ANEXO

RESULTADOS DE MONITOREO DE AIRE AÑO 2023

EMCABB I

CO (ppm)	ene	feb	mar	abr	may	jun	jul	ago	sep	oct	nov	dic
máximo	1,8	1,8	1,3	1,8	3,2	3,9	2,9	2,8	1,3	1,8	1,4	1,4
promedio	0,3	0,3	0,3	0,3	0,4	0,5	0,5	0,6	0,5	0,5	0,5	0,5
mediana	0,3	0,3	0,2	0,2	0,3	0,4	0,4	0,6	0,4	0,5	0,5	0,4
mínimo	0,17	0,10	< LD	< LD	0,04	0,20	0,09	0,37	0,12	0,30	< LD	0,13
varianza	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0
desv estándar	0,1	0,1	0,2	0,2	0,4	0,3	0,3	0,2	0,2	0,1	0,2	0,2
rango	1,6	1,7	1,3	1,7	3,2	3,7	2,8	2,4	1,2	1,5	1,3	1,2
numero de datos	730	663	711	714	727	717	738	714	696	738	715	603
rango inter	0,1	0,1	0,1	0,1	0,3	0,2	0,3	0,1	0,4	0,1	0,4	0,2
cv	35,8	46,0	61,4	83,8	83,8	67,6	69,5	33,6	44,9	25,5	40,4	40,8
coef. Skew	6,4	4,6	2,7	3,1	3,7	5,6	3,2	4,1	1,0	4,4	0,2	0,9
coef. Kurt	59,6	39,1	10,3	13,8	18,8	40,7	14,2	26,9	1,0	34,3	-0,3	1,7
percentiles												
10	0,3	0,2	0,1	0,1	0,2	0,3	0,2	0,5	0,2	0,4	0,1	0,2
25	0,3	0,2	0,2	0,1	0,2	0,4	0,3	0,5	0,2	0,4	0,2	0,4
50	0,3	0,3	0,2	0,2	0,3	0,4	0,4	0,6	0,4	0,5	0,5	0,4
75	0,4	0,3	0,3	0,3	0,5	0,5	0,5	0,7	0,6	0,5	0,6	0,6
90	0,4	0,4	0,4	0,5	0,7	0,7	0,7	0,8	0,7	0,6	0,6	0,7
95	0,5	0,5	0,6	0,6	1,0	0,8	1,0	1,0	0,8	0,7	0,7	0,8
99	0,8	0,7	1,0	1,1	2,1	2,0	1,9	1,6	1,0	0,8	0,9	1,0
99,99	1,8	1,8	1,3	1,7	3,2	3,9	2,9	2,8	1,3	1,7	1,4	1,4

SO ₂ (ppb)	ene	feb	mar	abr	may	jun	jul	ago	sep	oct	nov	dic
máximo	3,9	3,1	11,9	1,5	2,6	3,2	3,1	5,7	2,7	6,4	6,2	1,1
promedio	0,4	0,4	0,4	0,4	0,5	0,6	0,8	1,0	0,6	0,4	0,4	0,3
mediana	0,4	0,4	0,4	0,4	0,4	0,5	0,7	0,8	0,4	0,3	0,4	0,3
mínimo	0,3	0,3	0,3	0,3	0,3	0,3	0,4	0,5	0,2	0,2	0,2	0,2
varianza	0,0	0,0	0,3	0,0	0,1	0,1	0,1	0,4	0,1	0,1	0,1	0,0
desv estándar	0,2	0,2	0,6	0,1	0,3	0,3	0,4	0,6	0,3	0,3	0,4	0,1
rango	3,6	2,8	11,6	1,2	2,3	2,9	2,7	5,2	2,5	6,2	6,0	0,9
numero de datos	733	663	740	714	725	716	737	640	656	738	714	602
rango inter	0,0	0,0	0,0	0,1	0,2	0,1	0,2	0,3	0,4	0,1	0,1	0,1
cv	37,7	44,0	126,1	34,2	53,1	57,1	41,8	63,4	57,4	83,2	83,0	26,3
coef. Skew	14,7	7,8	18,9	3,5	3,4	4,2	2,7	3,2	2,6	11,0	8,5	4,5
coef. Kurt	293,8	80,1	363,3	18,0	15,5	21,6	9,9	13,3	10,2	171,3	107,0	43,8
percentiles												
10	0,4	0,4	0,4	0,3	0,3	0,4	0,6	0,6	0,3	0,3	0,3	0,2
25	0,4	0,4	0,4	0,3	0,4	0,5	0,7	0,7	0,3	0,3	0,3	0,2
50	0,4	0,4	0,4	0,4	0,4	0,5	0,7	0,8	0,4	0,3	0,4	0,3
75	0,4	0,4	0,4	0,4	0,6	0,6	0,9	1,0	0,7	0,4	0,4	0,3
90	0,5	0,5	0,5	0,5	0,8	0,8	1,3	1,7	0,8	0,4	0,6	0,3
95	0,5	0,6	0,5	0,6	1,0	1,2	1,5	2,5	1,1	0,6	0,9	0,3
99	0,9	1,2	0,8	1,0	1,7	2,4	2,2	3,5	1,8	1,7	2,0	0,5
99,99	3,7	3,1	11,8	1,5	2,6	3,2	3,1	5,7	2,7	6,1	6,0	1,1

NO ₂ (ppb)	ene	feb	mar	abr	may	jun	jul	ago	sep	oct	nov	dic
máximo	27,7	35,5	37,6	31,0	44,6	57,2	43,7	44,3	36,8	39,5	31,6	26,3

	I	Ī	Ī	l	İ	Ī	I	l	Ī	l	İ	Ī
promedio	4,5	4,7	5,8	6,1	10,2	8,6	10,7	8,1	7,4	5,3	4,4	4,3
mediana	3,8	3,7	4,3	4,3	7,2	6,3	8,2	5,4	6,0	3,9	3,6	3,7
mínimo	0,3	0,3	0,3	< LD	< LD	0,3	1,3	0,5	1,0	0,7	< LD	< LD
varianza	11,7	18,0	27,6	29,3	69,4	59,6	64,3	54,9	28,0	24,0	13,4	9,7
desv estándar	3,4	4,2	5,3	5,4	8,3	7,7	8,0	7,4	5,3	4,9	3,7	3,1
rango	27,4	35,2	37,3	32,6	46,3	56,9	42,4	43,8	35,8	38,8	31,7	26,5
numero de datos	732	663	741	679	723	716	737	714	695	738	714	602
rango inter	3,3	3,7	4,8	6,0	10,7	7,3	10,0	7,0	5,7	4,2	3,2	3,9
cv	75,4	91,2	91,3	88,7	81,8	89,8	75,1	91,8	71,5	92,3	82,7	73,3
coef. Skew	2,3	2,7	2,2	1,6	1,3	2,4	1,3	1,9	2,1	3,2	3,1	2,2
coef. Kurt	8,2	10,7	6,6	2,8	1,5	7,6	1,5	4,1	6,5	14,8	14,8	9,2
percentiles												
10	1,5	1,1	1,2	1,4	2,3	2,2	2,9	2,0	2,7	1,6	1,4	1,2
25	2,3	1,9	2,3	2,4	3,9	3,5	4,6	3,1	3,8	2,3	2,2	2,0
50	3,8	3,7	4,3	4,3	7,2	6,3	8,2	5,4	6,0	3,9	3,6	3,7
75	5,6	5,6	7,1	8,4	14,6	10,8	14,6	10,1	9,5	6,5	5,4	5,9
90	8,4	9,2	12,4	12,8	22,4	17,7	22,2	18,3	13,3	10,3	8,0	7,8
95	10,6	12,5	16,3	17,7	27,0	23,0	26,7	25,3	17,9	14,4	10,9	9,1
99	18,0	23,3	25,5	25,2	36,8	39,3	36,3	34,3	28,7	25,9	19,5	13,6
99,99	27,5	35,1	37,6	30,8	44,6	56,8	43,6	44,3	36,7	39,4	31,5	26,2

Promedio anual NO_2 en EMCABB I: 6,7 ppb

PM ₁₀ (ug/m³)	ene	feb	mar	abr	may	jun	jul	ago	sep	oct	nov	dic
máximo (24 hs)	105,0	108,2	143,1	214,2	76,6	75,0	119,7	148,8	48,7	120,9	157,0	101,5

	Ī	İ	I	I	Ì	I	ı	l I		I	İ	Ì
promedio	42,6	51,6	62,1	54,5	37,5	33,4	29,5	45,3	14,9	32,5	44,6	46,5
mediana	39,1	52,0	50,5	46,5	38,4	26,1	23,0	38,6	13,1	24,1	40,8	37,8
mínimo	18,1	15,1	23,7	16,5	12,7	8,4	12,8	12,2	7,0	5,2	14,5	22,4
varianza	336,6	497,2	1213,2	1534,1	306,4	402,2	440,3	1183,9	92,0	569,9	819,4	442,7
desv estándar	18,3	22,3	34,8	39,2	17,5	20,1	21,0	34,4	9,6	23,9	28,6	21,0
rango	86,9	93,1	119,4	197,7	63,9	66,6	106,9	136,6	41,7	115,7	142,5	79,1
numero de datos	31	27	13	29	30	30	30	22	19	28	29	16
rango inter	21,6	25,7	27,6	32,7	19,2	27,8	14,2	23,0	7,5	27,8	36,1	18,4
cv	43,1	43,2	56,2	71,9	46,7	60,0	71,1	76,0	64,4	73,5	64,2	45,2
coef. Skew	1,3	0,7	1,3	2,6	0,7	0,7	3,0	1,8	2,4	2,0	2,2	1,6
coef. Kurt	2,9	0,8	1,0	9,0	-0,3	-0,7	11,2	3,3	7,1	5,7	7,6	2,6
percentiles												
10	22,7	25,1	34,5	22,8	18,0	12,7	16,3	15,2	8,5	12,7	18,9	28,6
25	31,4	36,3	41,5	36,1	24,8	19,3	18,5	30,1	11,2	18,4	23,3	32,9
50	39,1	52,0	50,5	46,5	38,4	26,1	23,0	38,6	13,1	24,1	40,8	37,8
75	52,9	62,0	69,1	68,8	43,9	47,1	32,8	53,1	18,7	46,2	59,4	51,3
90	64,2	75,6	108,6	85,5	66,3	65,0	53,0	81,7	24,5	57,6	70,9	69,2
95	67,5	96,4	123,6	115,8	70,4	68,4	57,3	124,7	28,0	61,4	73,3	89,0
99	94,2	106,6	139,2	190,0	75,2	73,6	102,6	144,2	44,6	104,9	133,8	99,0
99,99	104,9	108,2	143,1	214,0	76,6	75,0	119,5	148,8	48,7	120,7	156,8	101,5

Promedio anual $PM_{10}\,EMCABB~I$: 40,6 $\mu g/m^3$

O3 (ppb)	ene	feb	mar	abr	may	jun	jul	ago	sep	oct	nov	dic
máximo (8 horas)	42	47	35	33	33	21	23	27	31	36	38	33
promedio	19	17	15	14	10	12	12	17	17	21	20	18

mediana	40	1.0	45	45	4.0	42	43	10	40	24	20	10
mediana	18	16	15	15	10	12	12	18	18	21	20	18
mínimo (8 horas)	2	3	1	1	0	2	1	1	3	5	5	4
varianza	70	97	53	64	58	32	51	48	42	43	57	56
desv estándar	8	10	7	8	8	6	7	7	6	7	8	7
rango	47	66	36	69	59	25	26	29	48	39	37	34
numero de datos	732	662	631	654	727	717	738	714	697	738	539	604
rango inter	11	14	10	11	12	9	13	10	9	8	10	10
cv	44	57	48	56	75	48	61	42	37	31	37	41
coef. Skew	0	1	0	1	1	0	0	-1	0	0	0	0
coef. Kurt	0	1	0	5	2	-1	-1	0	0	1	0	-1
percentiles												
10	9	5	5	2	1	3	1	6	8	13	11	8
25	13	10	10	9	3	7	5	12	13	17	15	14
50	18	16	15	15	10	12	12	18	18	21	20	18
75	24	24	20	20	15	16	18	22	22	25	25	24
90	30	32	25	24	19	19	21	24	25	29	32	29
95	33	35	27	25	22	20	22	26	26	31	34	30
99	42	39	35	29	32	22	24	27	28	34	38	32
99,99	48	67	36	69	58	25	26	29	48	40	39	36

SO ₂ (ppb)	ene	feb	mar	abr	may	jun	jul	ago	sep	oct	nov	dic
máximo	2,1	2,1	2,1	2,4	2,4	4,1	3,5	2,6	3,5	6,7	2,8	0,7
promedio	0,3	0,5	0,8	1,2	1,1	1,2	1,2	0,8	0,2	0,3	0,4	0,1
mediana	0,2	0,5	0,9	1,3	1,2	1,1	1,2	1,1	0,2	0,2	0,4	0,1
mínimo	< LD	< LD	< LD	0,3	0,0	0,4	0,7	< LD	< LD	< LD	< LD	< LD
varianza	0,3	0,2	0,1	0,1	0,1	0,1	0,0	0,3	0,0	0,3	0,4	0,0
desv estándar	0,5	0,5	0,3	0,3	0,3	0,4	0,2	0,5	0,2	0,5	0,6	0,1
rango	3,7	2,8	2,8	2,1	2,4	3,7	2,8	2,8	3,7	7,2	4,0	0,7
numero de datos	719	652	739	715	733	713	736	726	700	583	334	618
rango inter	0,8	0,8	0,3	0,4	0,3	0,2	0,2	1,0	0,2	0,2	0,8	0,0
cv	201,3	98,6	42,4	22,9	25,5	30,8	17,7	67,2	93,0	204,5	145,7	52,7
coef. Skew	-0,4	0,0	-1,3	0,1	-0,6	3,6	3,0	-0,1	7,3	7,0	-0,2	3,6
coef. Kurt	0,5	-0,7	3,5	0,6	2,5	20,1	21,5	-1,3	99,0	61,5	0,2	28,0
percentiles												
10	< LD	< LD	0,4	0,9	0,8	0,9	1,0	0,1	0,1	< LD	< LD	0,1
25	< LD	0,1	0,7	1,0	1,0	1,0	1,1	0,2	0,1	0,1	0,1	0,1
50	0,2	0,5	0,9	1,3	1,2	1,1	1,2	1,1	0,2	0,2	0,4	0,1
75	0,7	0,9	1,0	1,4	1,3	1,2	1,3	1,2	0,3	0,3	0,9	0,1
90	0,9	1,2	1,1	1,5	1,4	1,4	1,4	1,4	0,3	0,5	1,1	0,2
95	1,0	1,3	1,2	1,6	1,5	1,7	1,6	1,5	0,4	0,6	1,2	0,2
99	1,2	1,4	1,5	2,0	1,7	2,9	2,0	1,8	0,9	3,1	1,5	0,3
99,99	2,1	2,1	2,1	2,4	2,4	4,1	3,4	2,6	3,4	6,6	2,8	0,7

NO₂ (ppb)	ene	feb	mar	abr	may	jun	jul	ago	sep	oct	nov	dic
máximo	16,9	24,1	26,7	30,4	38,7	39,1	34,3	34,9	35,8	34,0	19,3	22,3
promedio	5,2	4,8	6,3	7,8	11,0	9,6	9,8	9,1	7,1	4,9	5,4	4,7
mediana	4,8	4,2	5,3	6,5	9,6	8,1	8,3	7,2	5,9	3,4	4,4	4,2
mínimo	1,6	1,0	0,9	1,2	2,7	1,4	1,7	0,4	0,3	0,1	0,2	0,1
varianza	5,0	9,1	15,5	22,7	30,3	36,2	34,8	42,9	25,2	20,1	13,9	6,4
desv estándar	2,2	3,0	3,9	4,8	5,5	6,0	5,9	6,6	5,0	4,5	3,7	2,5
rango	15,3	23,1	25,8	29,2	36,0	37,7	32,6	34,5	35,5	33,9	19,1	22,2
numero de datos	313	306	660	716	649	711	700	722	698	729	565	602
rango inter	2,5	3,2	4,0	5,0	6,7	6,5	8,0	7,5	5,7	4,4	4,7	3,5
cv	42,7	62,3	62,6	61,0	50,1	63,0	60,5	71,8	70,2	92,1	69,4	54,2
coef. Skew	1,4	2,2	1,7	1,6	1,2	1,5	1,2	1,5	1,9	2,4	1,1	1,3
coef. Kurt	3,1	8,3	3,5	2,7	1,6	2,9	1,4	2,2	5,6	8,8	1,1	4,3
percentiles												
10	2,9	2,1	2,5	3,1	5,2	3,7	3,8	2,9	2,4	1,1	1,4	2,0
25	3,7	2,7	3,7	4,6	7,0	5,3	5,0	4,5	3,6	2,0	2,6	2,8
50	4,8	4,2	5,3	6,5	9,6	8,1	8,3	7,2	5,9	3,4	4,4	4,2
75	6,2	5,9	7,7	9,6	13,7	11,8	13,0	12,0	9,3	6,4	7,3	6,3
90	8,2	8,4	11,6	14,6	19,0	17,7	18,1	18,1	13,7	10,1	10,8	8,0
95	9,5	10,4	14,2	18,3	22,1	22,2	20,8	22,4	16,1	13,3	12,7	9,0
99	11,6	14,7	19,9	24,5	26,4	29,7	27,6	32,2	25,1	21,6	16,6	10,9
99,99	16,8	24,0	26,5	30,2	38,5	38,9	34,2	34,9	35,8	33,8	19,3	21,9

Promedio anual NO₂ EMCABB II: 7,4 ppb

PM ₁₀ (ug/m³)	ene	feb	mar	abr	may	jun	jul	ago	sep	oct	nov	dic
máximo	58,2	53,2	79,6	197,2	59,0	62,0	88,0	134,5	52,9	54,1	68,1	137,6

	Ī			l			l					
promedio	25,3	28,6	27,4	35,3	30,1	23,8	25,5	42,8	20,6	27,1	29,7	34,3
mediana	22,0	28,3	27,4	29,2	27,8	20,7	20,5	35,7	21,4	27,0	23,0	29,5
mínimo	10,6	11,9	6,1	14,2	14,5	2,9	4,6	21,0	6,8	9,2	13,3	13,9
varianza	107,0	111,0	193,8	1070,7	148,3	228,4	289,0	792,6	101,7	119,4	179,3	666,5
desv estándar	10,3	10,5	13,9	32,7	12,2	15,1	17,0	28,2	10,1	10,9	13,4	25,8
rango	47,6	41,3	73,5	183,0	44,5	59,1	83,4	113,5	46,1	44,9	54,8	123,7
numero de datos	28	26	31	29	31	29	31	16	25	30	22	24
rango inter	10,2	16,1	12,6	16,3	16,2	19,4	15,7	14,4	14,7	13,4	16,4	21,5
cv	40,9	36,8	50,8	92,7	40,5	63,5	66,7	65,8	49,0	40,3	45,1	75,3
coef. Skew	1,5	0,4	1,9	4,6	0,9	0,9	2,1	2,6	1,2	0,8	1,5	3,0
coef. Kurt	2,8	-0,4	6,1	23,0	0,2	0,3	5,4	7,4	2,9	0,9	2,4	11,0
percentiles												
10	14,8	16,8	13,7	16,4	17,7	7,9	11,3	24,7	10,3	15,7	16,3	16,4
25	18,1	20,9	19,6	21,5	19,3	13,3	13,7	28,4	11,9	18,5	19,9	19,1
50	22,0	28,3	27,4	29,2	27,8	20,7	20,5	35,7	21,4	27,0	23,0	29,5
75	28,3	37,0	32,2	37,8	35,5	32,7	29,3	42,8	26,6	31,9	36,2	40,6
90	36,6	42,4	36,5	46,1	48,1	45,2	47,7	68,5	30,0	39,9	44,8	51,8
95	41,8	43,8	47,5	50,1	54,2	53,6	55,0	92,2	31,7	47,8	45,2	69,6
99	54,2	50,9	72,9	156,2	58,6	60,2	80,1	126,0	47,9	54,0	63,3	122,6
99,99	58,2	53,2	79,5	196,8	59,0	62,0	87,9	134,4	52,9	54,1	68,1	137,4

Promedio anual PM_{10} EMCABB II: 28,7 $\mu g/m^3$

PM2,5 (ug/m³)	ene	feb	mar	abr	may	jun	jul	ago	sep	oct	nov	dic
máximo	14,0	14,9	12,9	25,7	20,9	22,2	40,4	29,1	10,1	10,4	9,6	14,3
promedio	7,9	8,8	8,5	9,7	12,0	7,9	10,3	10,5	5,6	6,2	5,1	7,2
mediana	6,9	8,4	8,9	9,0	12,2	6,6	9,3	9,4	5,5	6,0	4,1	7,0
mínimo	2,2	5,0	2,2	1,8	4,0	0,5	< LD	2,1	2,3	1,0	0,3	1,0
varianza	10,1	6,8	8,1	25,0	20,2	25,3	51,0	35,3	4,4	5,3	6,9	7,3
desv estándar	3,2	2,6	2,9	5,0	4,5	5,0	7,1	5,9	2,1	2,3	2,6	2,7
rango	11,8	9,9	10,7	23,9	16,9	21,7	41,5	27,0	7,8	9,4	9,3	13,3
numero de datos	28	26	31	29	31	29	31	16	25	30	22	24
rango inter	4,7	3,2	4,3	6,6	7,2	4,6	6,3	5,2	2,5	3,0	3,9	2,9
cv	40,2	29,7	33,6	51,5	37,4	63,7	69,3	56,6	37,3	37,1	51,5	37,5
coef. Skew	0,3	0,5	-0,4	1,2	0,2	1,4	2,5	2,0	0,5	0,0	0,4	0,5
coef. Kurt	-0,8	-0,2	-0,6	2,4	-1,0	2,0	9,8	6,2	-0,4	-0,2	-0,6	1,8
percentiles												
10	3,8	5,4	4,7	4,9	7,0	3,2	4,4	6,6	3,1	3,5	1,3	4,0
25	4,8	6,8	6,1	6,6	8,1	4,9	6,5	7,3	4,3	4,7	2,4	5,2
50	6,9	8,4	8,9	9,0	12,2	6,6	9,3	9,4	5,5	6,0	4,1	7,0
75	9,5	9,9	10,4	13,2	15,3	9,5	12,8	12,5	6,8	7,6	6,3	8,1
90	11,5	11,9	12,0	14,8	18,3	13,3	17,7	14,5	8,6	8,9	7,7	9,3
95	12,3	12,7	12,6	17,0	18,9	18,8	17,9	18,2	9,4	10,2	9,2	10,8
99	13,6	14,4	12,8	23,6	20,5	21,5	33,7	26,9	10,0	10,3	9,5	13,5
99,99	14,0	14,9	12,9	25,7	20,9	22,2	40,3	29,1	10,1	10,4	9,6	14,3

Promedio anual $PM_{2,5}$ EMCABB II: 8,4 $\mu g/m^3$